Bertholletia Excelsa
Bertholletia excelsa (binomen ab Amato Bonpland cum Alexandro von Humboldt anno 1807 statutum) est arbor Americana Meridionalis in familia Lecythidacearum et fons seminis edulis commercioque exculti.
bertholletia excelsa
Brazil nut (Bertholletia excelsa Bonpl.) extraction serves as an important economic resource in the Madre de Dios region of Peru simultaneously promoting forest conservation, yet, under current management, it cannot compete with other land uses. This study investigated the effects of logging gaps on Brazil nut natural regeneration. A total of 48 paired logging gap-understory sites were visited in Brazil nut concessions in the Tambopata province of Madre de Dios, Peru. At each site, the number of Brazil nut recruits was counted and canopy openness and gap area were measured. Significantly higher levels of recruit density were found in logging gaps than in understory sites. Additionally, recruit density was positively correlated with canopy openness. Further, in experimental plantings in paired gap and understory sites, canopy openness, height, total leaf area, and number were recorded from August 2011 to February 2012. Height, total leaf area, and leaf number were significantly higher for tree-fall gap grown seedlings, lending further evidence to improved recruitment success of Brazil nuts in forest gaps. These results suggest that multiple-use forest management could be considered as an alternative for the sustainable extraction of Brazil nuts but also highlight that further studies are required.
To our knowledge, the current study is the first to investigate the effect of logging gaps on B. excelsa natural regeneration in the Peruvian Amazon. Specifically, we studied Brazil nut recruit density (seedlings, saplings, and juveniles) in logging gaps paired with understory plots in active Brazil nut concessions in Madre de Dios, Peru. We investigated the importance of (a) logging gaps or understory sites; (b) canopy openness; and (c) distance to the nearest reproductively mature tree, on recruitment. Our hypothesis was that higher light availability would favor B. excelsa regeneration in logging gaps. These data were complimented by a comparative seedling growth experiment investigating the importance of canopy openness on height, total leaf area, and leaf number in tree-fall gaps and understory environment, with the aim to provide further understanding of Brazil nut recruitment success.
An improved understanding of the impacts of selective logging on Brazil nut recruitment is crucial to the long-term sustainability of Brazil nut extraction in multiple use forests. Higher recruit density in logging gaps, a positive correlation between recruit density and canopy openness, and increased growth rates in tree-fall gaps support the earlier classification of B. excelsa as a gap-dependent species [1, 2, 5]. Further, higher seedling growth rates in logging gaps and fallows [5, 23], which lead to improved recruitment success, were positively correlated with higher light environments. Together, these results and the literature suggest the possibility that selective logging could foster natural B. excelsa regeneration, both through enhanced establishment and growth rates, but further studies more explicitly comparing regeneration in natural forest gaps and unlogged forest understory environments are needed.
The oil of the Brazil nut (Bertholletia excelsa) was studied for its composition in fatty acids, tocopherols, sterols and phospholipids. The fatty acids composition of phospholipids was also studied. These results were compared to those of sunflower, walnut, almond, soya and olive oils. Its high content of unsaturated fatty acids, of β-tocopherol and of β-sitosterol gave to the Brazil nut interesting antioxidant and anti-cholesterol properties. The composition of fatty acids in phospholipid is very different from the composition of the oil. Linolenic acid, which is not present in the oil, is present at a high level in phosphatidylethanolamine.
The oil of the Brazil nut (Bertholletia excelsa) was studied for its composition in fatty acids, tocopherols, sterols and phospholipids. The fatty acids composition of phospholipids was also studied. These results were compared to those of sunflower, walnut, almond, soya and olive oils. Its high content of unsaturated fatty acids, of β-tocopherol and of β-sitosterol gave to the Brazil nut interesting antioxidant and anti-cholesterol properties. The composition of fatty acids in phospholipid is very different from the composition of the oil. Linolenic acid, which is not present in the oil, is present at a high level in phosphatidylethanolamine.
O óleo da castanha-do-pará (Bertholletia excelsa) foi estudado por causa da sua composição em ácidos graxos, tocoferóis, esteróis e fosfolipídios. A composição de ácidos graxos nos fosfolipídeos também foi estudada. Os resultados foram comparados com os do girassol, da castanha, amêndoa, noz, soja e azeites. O seu alto teor em ácidos graxos insaturados, em β-tocoferol e em β-sitosterol confere à castanha-do-pará interessantes propriedades antioxidantes e de prevenção do colesterol. A composição de ácidos graxos em fosfolipídio é muito diferente da composição do óleo. O ácido linolênico, que não se encontra no óleo, encontra-se em grande quantidade na fosfatidiletanolamina.
Brazil nuts, seeds of Bertholletia excelsaH.B.K. are produced and exported from the Amazon Basin region and are used most extensively in confections in Europe and North America.1 Although known for their protein content, 15-17% by fresh weight and about 50% by weight of its defatted flour, the nuts are also a good source of oil (63-70%).
This species is reported to be widely distributed all over the Amazon region. Bertholletia excelsa is a gregarious species, found in non-inundable areas of terra firme forests. The trade of timber of B. excelsa is restricted in Brazil.Vulnerable(IBAMA,2 041b061a72